
Neurocomputing 378 (2020) 270–282 

Contents lists available at ScienceDirect 

Neurocomputing 

journal homepage: www.elsevier.com/locate/neucom 

Diverse frequency band-based convolutional neural networks for tonic 

cold pain assessment using EEG 

Mingxin Yu 

a , b , Yichen Sun 

a , Bofei Zhu 

a , Lianqing Zhu 

a , ∗, Yingzi Lin 

b , ∗, Xiaoying Tang 

c , 
Yikang Guo 

b , Guangkai Sun 

a , Mingli Dong 

a 

a Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology 

University, 6 Hongxia Road, Chaoyang District, Beijing 10 0 015, China 
b Intelligent Human-Machine Systems Lab, College of Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA 
c School of Life Sciences, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing 10 0 086, China 

a r t i c l e i n f o 

Article history: 

Received 23 December 2018 

Revised 19 September 2019 

Accepted 13 October 2019 

Available online 17 October 2019 

Communicated by Dr. Li Sheng 

Keywords: 

Tonic cold pain classification 

EEG 

Convolutional Neural Networks (ConvNets) 

Deep learning 

Pattern recognition 

a b s t r a c t 

The purpose of this study is to present a novel classification framework, called diverse frequency band- 

based Convolutional Neural Networks (DFB-based ConvNets), which can objectively identify tonic cold 

pain states. To achieve this goal, scalp EEG data were recorded from 32 subjects under cold stimuli con- 

ditions. The proposed DFB-based ConvNets model is capable of classifying three classes of tonic pain: No 

pain, Moderate Pain, and Severe Pain. Firstly, the proposed method utilizes diverse frequency band-based 

inputs to learn temporal representations from different frequency bands of Electroencephalogram (EEG) 

which are expected to have more discriminative power. Then the derived features are concatenated to 

form a feature vector, which is fed into a fully-connected network for performing the classification task. 

Experimental results demonstrate that the proposed method successfully discriminates the tonic cold 

pain states. To show the superiority of the DFB-based ConvNets classifier, we compare our results with 

the state-of-the-art classifiers and show it has a competitive classification accuracy (97.37%). Moreover, 

these promising results may pave the way to use DFB-based ConvNets in clinical pain research. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Pain management is one of the essential goals in health and

patient care. It is directly related to (1) patient safety, (2) thera-

peutic effectiveness, and (3) patient’s positive experience. Gener-

ally, clinicians rely on patients’ self-reported information as well as

assessments of multiple clinical cues. In practical settings, the most

common measures available for pain assessment are visual analog

scales (VAS), numerical rating scales (NRS), and verbal rating scales

(VRS) [1] . Self-reported measures are considered the gold standard

for helping physicians and caregivers guide treatment accurately.

Although it is a fact that self-report measures are able to provide

important clinical information for pain patients, those approaches

fail to be used with some individuals who are unable to verbally

give their pain intensity, such as infants, patients with disorders of
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onsciousness, and demented patients [2 , 3] . Additionally, some pa-

ients who are addicted to drugs give false information about their

ain intensity on purpose to obtain medication. By nature, scores

ased on patients’ responses are not suitable for frequent adminis-

ration, to assess pain continuously for trends over time or for con-

inuous patient monitoring. The consequences of inadequate and

elayed pain assessment include misdiagnosis, inappropriate treat-

ent, patient dissatisfaction and increased patient risks [43 , 44] .

onsequently, objective measurement of pain has long been clin-

cians’ Holy Grail for effective pain treatment and management. 

Pain is a complex unpleasant experience and a sign or symp-

om associated with real or potential tissue damage or illness [4] .

he response of pain perception can either reflect sensory infor-

ation, or can be influenced by various social and psychological

actors [5] . Hence, pain is regarded as a multi-dimensional com-

lex phenomenon. Although pain is considered an important fac-

or in patient care, few methods are available to clinicians for ob-

ective assessment of pain [ 6 , 7 ]. In past years, many researchers

ere seeking to take advantage of neuroimaging techniques for

ain intensity measurement including single-photon emission to-

ography (SPET) [40] , positron emission tomography (PET) [41] ,

unctional magnetic tomography imaging (fMRI) [42] , and elec-
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roencephalography (EEG). Significant results obtained by those

ethods evidenced that each was able to be used as an indicator

f pain intensity. However, the former three methods are more ex-

ensive and used inconvenience for patients and clinicians. Among

hose methods, EEG with high temporal resolution is considered

s a very useful noninvasive tool for assessing pain intensity. Fur-

hermore, EEG has virtues of clinical convenience, low cost setup

nd maintenance. In light of EEG advantages, it has gained much

nterest from experts searching for measures to characterize the

erception of pain. By looking at the principles of related meth-

ds, some researchers used frequency domain analysis method to

nalyze the states of pain under different frequency bands of EEG

ignals, and other researchers combined the feature extraction and

achine learning method to classify the level of pain perception. 

The frequency domain analysis method depends on utilizing

ower spectrum characteristics to analyze subjective pain percep-

ion. Nir et al. [8] carried out a subjective perception experi-

ent of tonic pain through a thermal contact-heat simulator. The

eak alpha frequency (PAF) was used as an objective measure for

ain perception. Experimental results showed that the relevance

f PAF to the neural processing of tonic pain provided its po-

ential to characterize pain perception. Later, Nir et al. [9] took

teps forward this research to focus on exploring the characteris-

ics of subjective perception of tonic pain in alpha-1 power and

ound that it was able to serve as a direct, objective, and ex-

erimentally stable measure for subjective pain perception. Shao

t al. [10] investigated electrocortical responses to tonic cold pain

ith frequency-domain analysis across five frequency bands, i.e.,

–4 Hz, 4–8 Hz, 8–12 Hz, 12–18 Hz, and 18–30 Hz, in multiple brain

egions. Experiments demonstrated that there were significantly

ifferent 4–8 Hz, 12–18 Hz, and 18–30 Hz source activities between

old pain and no pain conditions. Gram et al. [11] investigated

hanges in EEG between rest and tonic cold pain. The findings

howed that relative spectral indices increased in delta and gamma

ands, and decreased in theta, alpha-1 and alpha-2 bands. Chang

t al. [12] explored the effects of tonic cold pain in men. Con-

inuous EEG recordings were obtained before, during, and after a

old pressor test. Experimental results showed that a decrease of

lpha and increase of beta activities occurred after the onset of

old pressor test. Hansen et al. [13] recorded EEG signals during

est and with a hand immersed in iced water. The experiment

as performed in eight frequency bands, i.e., delta (1–4 Hz), theta

4–8 Hz), alpha-1 (8–10 Hz), alpha-2 (10–12 Hz), beta-1 (12–18 Hz),

eta-2 (18–24 Hz), beta-3 (24–32 Hz), and gamma (32–60 Hz). Find-

ngs showed that reliability was high in all eight frequency bands

uring rest and cold pressor conditions. Similar works have also

hown a decrease in the alpha frequency band and an increase in

he beta frequency band [14–20] . Provided methods based on fre-

uency domain analysis have effectively demonstrated that the ac-

ivity of certain frequency bands was strongly related to pain re-

ponse, e.g., alpha and beta frequency bands. 

Machine learning methods rely on extracting features in the

ime domain, frequency domain, and time-frequency domain of

EG signals to train a classification model for recognizing differ-

nt levels of pain perception. Vatankhah and Toliyat [21] proposed

avelet coherency method to estimate pain states. Wavelet coeffi-

ients were firstly extracted to provide pain feature vectors, then a

ybrid scheme using a Hidden Markov Model (HMM) and a Sup-

ort Vector Machine (SVM) was utilized for classifying between

o-pain and pain states. With fuzzy logic theory, Panavarnan and

ongsawat [22] developed a pain feature extraction algorithm in-

icated the thermal pain state of the EEG, then a polynomial ker-

el support vector machine classifier was used for classifying two

tates of pain. Akin this method, Kumar et al. [23] designed an

EG model based on fuzzy sets for pain estimation and observed

hat EEG parameters ‘Hjorth Activity’ and ‘Spectral Entropy’ could
eflect the level of pain experienced by the surgical patient dur-

ng the postoperative period. Vijayakumar et al. [24] developed

 robust and accurate machine learning method for quantifying

onic thermal pain. Using time-frequency wavelet representations

f independent components a random forest model was trained

o predict pain scores. The proposed method assessed the relative

mportance of each frequency band to pain quantification. Con-

lusions demonstrated that the gamma band was the most im-

ortant to classification accuracy. Hadjileontiadis et al. [25] de-

igned an approach that combined the continuous wavelet trans-

orm (CWT) with higher-order statistics (HOS) for extracting tonic

old pain representations in EEG signals with five frequency bands.

he experimental results, based on SVM, Quadratic Discriminant

nalysis (QDA), Mahalanobis (MAH), and k-Nearest Neighbors (k-

N) classifiers, showed that the WHOS-based features success-

ully discriminated the relaxed state from the pain state (mild and

evere pain). Alazrai et al. [26] present an EEG-based approach,

hich was employed to identify four different tonic cold pain

tates, i.e., relaxed state, relaxed-to-pain state (RPS), pain state (PS),

nd pain-to-relaxed state (PRS). Using discrete wavelet transform,

ime-frequency representations of EEG signals were first extracted

o construct nonlinear features. A proposed two-layer hierarchical

lassification framework that was successfully able to identify four

ain states. Compared with the frequency domain analysis method,

achine learning method is better able to discriminate objective

ain states, since the features not only come from frequency do-

ain, but also time variation of the pain-related EEG characteris-

ics. 

Although machine learning methods achieved better classifica-

ion results of pain states, the features used for training a clas-

ifier were still hand-engineered. We believe handcrafted features

re not able to extract enough feature representations from pain

EG signals. Recently, deep learning is a branch of machine learn-

ng that takes advantage of multiple layers of linear and non-linear

rocessing units to learn hierarchical representations of features

rom input data. It can be seen as an end-to-end learning method

hich identifies unseen examples without the need for feature en-

ineering. Especially, Convolutional Neural Networks (ConvNets) as

 predominant method of deep learning have been successfully

sed in brain-signal decoding [27–34] . ConvNets can extract and

earn local, low-level features from EEG data by using convolutions,

hich are key components, and then form global and high-level

eatures in deeper layers. Motived by the recent and widespread

uccess of ConvNets in EEG signals, this paper introduces a new

ramework for tonic cold pain classification based on deep Con-

Nets, which is different from the existing works that develop ded-

cated algorithms to extract features from EEG data of pain per-

eption. To the best of our knowledge, there is no existing work

escribing deep ConvNets systems that cope with identifying pain

tates. 

Based on frequency domain analysis method, we learned that

bvious changes between pain and no pain states occurred in cer-

ain frequency bands, e.g., alpha and beta. Inspired by these phe-

omena, specifically, we develop a classification framework that

tilizes several ConvNet branches, each of which is charge of

ne frequency band, extracting time-invariant features from EEG

ata of pain perception. Then extracted features on different fre-

uency bands are concatenated together and fed into the last

ully-connected network which outputs three types of pain states,

.e., No Pain, Moderate Pain, and Severe Pain. This study assesses

he tonic pain under the innoxious cold stimuli condition, which

s built with the iced water simulation experiment. Works has

een previously demonstrated that the human brain was able to

erceive distinct cold (or hot) somatic stimulation and discrimi-

ate its intensity with different affective responses [ 8 , 9 , 35 ]. In this

xperiment, we recruited thirty-two subjects and collected EEG
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Fig. 1. The overall flowchart of the proposed architecture for tonic cold pain assessment, FB-N represents for the Nth frequency band. 
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data from each subject under tonic cold pain stimuli conditions.

Experimental results demonstrated that the proposed method

outperformed existing state-of-the-art classifiers. Therefore, the

aim of this work is to develop a better approach using deep learn-

ing algorithms to objectively assess pain states. It could be taken

as a promising candidate for the development of an expert system

for clinical pain application. 

In summary, the main contributions of this paper are as fol-

lows: (1) A novel ConvNets framework with end-to-end learning

is proposed for tonic pain states classification. (2) The joint repre-

sentation using diverse frequency band in the proposed framework

can simultaneously take advantages of more temporal representa-

tions from different frequency bands of EEG signals. (3) In the first

convolutional block of the proposed framework, a specific architec-

ture with two layers, i.e., temporal convolution and spatial filter, is

designed for better handle the large number of input channels for

EEG signals. (4) A completed experimental procedure is designed

for innoxious tonic cold pain stimulation. 

The rest of this paper is organized as follows. The method used

in our research is described in Section 2 . Section 3 presents the

process of experimental design and experimental datasets estab-

lishment. Experimental results are reported in Section 4 . Finally, in

Section 5 , discussion and conclusions are given. 

2. The proposed method 

The architecture of the proposed tonic cold pain assessment

method is illustrated in Fig. 1 . It mainly consists of four successive

modules: (1) raw EEG data acquisition module (See Section 3.1 );

(2) preprocessing module; (3) cropped data module; and (4) di-

verse frequency band-based Convolutional Neural Networks (DFB-

ConvNets) module. All training and testing EEG data used in this

method from our experimental data (See Section 3.3 ). 

Specifically, the preprocessing module aims to remove noise

signals from raw EEG data. Then, specified frequency bands are fil-

tered with a band-pass Butterworth filter. The cropped data mod-

ule performed on each frequency band is used to increase samples

for training and testing DFB-ConvNets. Its aim is to avoid overfit-

ting usually caused by limited data. The diverse frequency band-

based ConvNets module is utilized to extract feature representa-

tions from different frequency bands of EEG signals, and then fur-

ther to recognize different pain states. To be specific, the EEG data

on each frequency band is first sent into a single ConvNet branch

(also called pipeline), which is used to extract different f eatures.

Then, the architecture of multiple ConvNet branches with each
ne representing a frequency band, so which is called diverse fre-

uency band-based ConvNets (DFB-ConvNets) model, is proposed

o identify pain states. In each ConvNets model, the deep fea-

ure extractor respectively performs convolutional operations in or-

er to extracting temporal representations from preprocessed EEG

ata. Lastly, all features derived from different frequency bands are

oncatenated and fed into the last fully-connected network which

erforms classification. In this paper, the proposed method is able

o classify the pain into three categories, i.e., No Pain (NP), Moder-

te Pain (MP), and Severe Pain (SP). 

.1. Preprocessing 

EEG activity is contaminated by strong muscle, eye movements,

nd eye blinks, which is a serious problem for EEG interpretation

nd analysis. Therefore, the prediction of pain perception would

ely on advanced signal processing techniques. In our research,

hree steps were carried out to preprocess EEG raw data. Firstly,

EG signals contaminated with strong muscle artifacts were man-

ally rejected by visual inspection. Then, an independent compo-

ent analysis (ICA) algorithm used in this pipeline can separate

nd remove eye blinks and eye movements by line decomposition.

s described by Jung et al. [46] , artifacts related to eye-blinks and

ovements could be automatically identified based on the combi-

ation of stereotyped artifact specific spatial and temporal features.

n our research, the artifact components were selected through an-

lyzing scalp topographies of independent components obtained by

n EEGLAB toolbox in MATLAB 2018. Two useful heuristics were

aken as two criterions for removing the independent components:

1) Eye movements should project mainly to frontal sites with

 lowpass time course; (2) Eye blinks should project to frontal

ites and have large punctate activations. After eliminating arti-

act components, the remaining independent components were

sed to reconstruct the denoised EEG trails. Lastly, all EEG sig-

als were filtered with a 6th order digital Butterworth bandpass

lter with different ranges of cutoff frequencies, i.e., [1Hz-4 Hz],

4Hz-8 Hz], [8Hz-13 Hz], [13Hz-30 Hz], and [30Hz-49 Hz]. The five

assbands correspond to delta, theta, alpha, beta, and gamma fre-

uency bands, respectively. 

.2. The cropped data 

This work adopts a cropped strategy applied in EEG data of

ain, which is able to lead to many more samples for training

nd testing deep ConvNets [36] . According to Section 3.4 , obtained
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Table 1 

Parameters of the ConvNets architecture in FB-1. 

Layers Type Number of neurons Filter size Stride 

Block 1 Temporal Conv1 32 × 488 × 25 1 × 13 1 

Spatial Filter 1 × 488 × 25 32 × 1 1 

Max-pooling 1 × 244 × 25 1 × 2 2 

Block 2 Conv2 1 × 232 × 50 1 × 13 1 

Max-pooling 1 × 116 × 50 1 × 2 2 

Block 3 Conv3 1 × 104 × 100 1 × 13 1 

Max-pooling 1 × 72 × 100 1 × 2 2 

Block 4 Conv4 1 × 60 × 200 1 × 13 1 

Max-pooling 1 × 30 × 200 1 × 2 2 

Block 5 Conv5 1 × 18 × 400 1 × 13 1 

Max-pooling 1 × 18 × 400 1 × 9 9 

Flatten Layer – 400 × 1 × 2 – –
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ontinuous EEG signal for each subject is cut into three segments

ith each one belongs to a type of pain state. In our study, we

ssume that each subject i has an EEG pain dataset, which is sep-

rated into labeled time-segments of the cropped EEG data. 

Concretely, given an origin pain dataset D i =
 ( X 1 , y 1 ) , · · · ( X N i 

, y N i ) } , where N i denotes the total number of

ropped EEG signals for subject i . The input matrix X j ∈ R E · T of

rail j , 1 ≤ j ≤ N i contains the preprocessed signals of E -recorded

lectrodes and T -discretized time steps, y N i is the class label,

here takes values from a set of three class labels. It can be

xpressed as: 

 y N i : y N i ∈ L = { l 1 = “no pain ”, l 2 = “moderate pain ”, 

l 3 = “severe pain ”} (1) 

In our work, we select a segmented pain signal of 1 s as one

rop on each pain state (Sampling rate: 500 Hz). Then, X j is com-

osed of 500 sampling points of EEG data. Lastly, all of those crops

re used as new training samples and have the same label y N i . 

More formally, one crop, corresponding to one second EEG data,

amely contains 500 EEG data points as sampling period of this

ystem is 2 milliseconds. The stride size, in our case, is set as

ne. In other words, the size of one second EEG data is selected

s a sliding window, it moved with equal stride size on EEG data

 N i 
. Overall, this results in 29,501 crops on 60 s EEG data (See

ection 3.4 ), which corresponds to each pain state. Generally, the

onvNets have no differences between crops and the global tem-

oral structure of the features in the complete trail, which stands

or a segmented EEG data. Hence, the goal of using the cropped

trategy is to force the ConvNets into extracting as many features

s possible that are present in all crops of EEG data from each pain

tate. 

.3. DFB-ConvNets 

As discussed in the introduction, frequency-based analysis

ethod demonstrated that EEG activity of pain perception had ob-

ious distinction in form of power value between no pain and pain

tates at certain frequency bands, e.g., alpha and beta. In addition,

achine learning-based experimental results also showed that best

ccuracy of pain recognition occurred in alpha and beta frequency

ands [ 22 , 25 , 26 ]. However, current methods for analyzing EEG pain

ata and recognizing pain states were only performed in a single

requency band. Inspired by discrete wavelet transform (DWT) for

epresenting EEG signals [37] , which analyzes an input signal at

ifferent frequency bands with different resolutions by decompos-

ng the signal into coarse detail and approximation information, a

FB-ConvNets model is designed. It is able to extract more infor-

ation of pain features from diverse frequency bands of EEG sig-

als and further to fuse those to obtain better classification results.

.3.1. Specific details 

All frequency bands we have specified are taken as input data

or the proposed DFB-ConvNets model in Fig. 1 . We employ mul-

iple deep ConvNets where each one corresponds to one fre-

uency band in our model to extract diverse pain representa-

ions from EEG signals. In the proposed framework, each ConvNet

as the same architecture, which consists of five convolution-max-

ooling blocks, as illustrated in Fig. 2 . A specific first block is de-

igned for dealing with the input data, followed by four standard

onvolution-max-pooling blocks and a flatten layer. After that, the

attened features are sent into the concatenation operation, which

s used to fuse diverse features derived from other pipelines. Lastly,

he concatenated features are fed into the last fully-connected net-

ork which performs classification. 

Except for the first block (detailed below), each block has two

ayers: convolution and pooling. Specifically, each convolutional
ayer performs three operations sequentially: 1D-convolution (One

imension-convolution) with its filter, batch normalization, and ap-

lying the rectified linear unit activation (ReLU) which is expressed

s: 

elu ( x ) = max ( 0 , x ) = 

{
x, i f x > 0 

0 , i f x ≤ 0 

(2) 

here x is the input of activation function. 

For each pooling layer, its aim is to down sample the input data

ith the max operation. The specifications of the number of neu-

ons, filter size, and stride in each layer are summarized in Table 1 .

n each block, the convolutional block respectively shows the num-

er of filters, a filter size, and a stride size. The pooling block re-

pectively shows a pooling size and a stride size. Dropout opera-

ions are performed to all convolutional layers with a probability

f 0.5. 

The first block is split into three layers: temporal convolution,

patial filter, and max pooling. The architecture of the first block

s shown in Fig. 3 . Compared to the RGB-images (RGB stands for

ed, Greed, and Blue colors) with three input channels (one per

olor), we consider the EEG data as a 32-channel data, i.e., one in-

ut channel per electrode. The goal of the proposed architecture

s better to deal with the large number of input channels for EEG

ignals. 

In the first layer, each filter with size 1 × 13 performs a convo-

ution on each input channel. After performing a series of convolv-

ng operations with the input EEG data, twenty-five feature maps

f size 32 × 488 are created. In the second layer, each feature map

orresponds to the previous feature map in the first layer. Hence,

he same number of feature maps is formed through the spatial fil-

ering with weights, which performs on all possible pairs of elec-

rodes. In this block, the activation function is not performed in

etween the first and second layers, but operated in the secondary

ayer. Lastly, performing a max pooling with 1 × 2 area is followed

y the activation operation. 

After obtaining diverse features of all specified frequency bands

y aforementioned feature extraction operations, those represen-

ative features are further fused together. Specifically, the features

rom different pipelines are concatenated with others to obtain a

eature vector f , which is defined as: 

 = { f FB −1 , f FB −2 · · · , f FB −N } (3) 

here FB-N denotes different frequency bands, f FB-N represents the

xtracted feature vector corresponding to a frequency band. 

Then, the concatenated feature vector is fed into a fully-

onnected layer, as illustrated in Fig. 1 . Finally, a softmax layer is

pplied to predict the classification label of the pain state. 

.3.2. DFB-ConvNets training 

As for our proposed model, it is trained in the supervised clas-

ification setting. Hence, the DFB-ConvNets needs to compute a
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Fig. 2. The architecture of the FB-N ConvNets branch with five blocks. Color code used: orange = convolution, green = max pooling, blue = flatten, red = concatenation. 

Fig. 3. The architecture of the first block. 
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function from input data to one real number per class: f ( X j ; θ):

R E · T → R M , where θ are the parameters of the function f, E is the

number of electrodes, T is the number of timesteps, and M is the

number of output labels (pain states), j is the sample. To train

the DFB-ConvNets model, the output is transformed to conditional

probabilities of a label l m 

given the input X j with the softmax func-

tion: 

p 
(
l m 

| f m 

(
X j ; θ

))
= 

exp 

(
f m 

(
X j ; θ

))
∑ M 

k =1 exp 

(
f k 
(
X j ; θ

)) (4)

Then, we can train the DFB-ConvNets model to assign highest

probabilities to the correct labels by minimizing the error function:

θ∗= arg min 

θ

1 

N 

N ∑ 

j=1 

L 
(
y j , p 

(
l m 

| f m 

(
X j ; θ

)))
(5)

where L denotes the cross-entropy function: 

L 
(
y j , p 

(
l m 

| f m 

(
X j ; θ

)))
= −

M ∑ 

m =1 

q 
(
y j = l m 

)
log p 

(
l m 

| f m 

(
X j ; θ

))
(6)

where q ( y j = l m 

) denotes the value of true label corresponds to

the m-th output. 

In our case, the Adam method, which is a variant of stochastic

gradient decent, is used for optimizing the parameters via back-

propagation [39] . 

Compared with conventional machine learning methods for

pain states classification, which computes can be viewed as con-

sisting of a feature extraction function and a classifier function, the

ConvNets can learn both jointly. The ConvNets is especially use-

ful for large datasets as it is able to learn valuable features which

may be unknown discriminative features. Specifically, for complex

EEG data, some unknown representative features could not be used

by more traditional feature extraction methods. Moreover, our pro-

posed DFB-ConvNets model is capable of learning more unknown

representative features of continuous pain EEG signals from differ-

ent pipelines of frequency bands. 
. Experimental procedure and data 

To collect and store experimental data, firstly, the apparatus and

xperimental procedure are presented. Then, the pain intensity rat-

ngs across the subjects are given. Lastly, the obtained data are

ivided into training, validating and testing sets for the proposed

FB-ConvNets model. 

.1. Experimental setup 

In our work, we use the Enobio 32-electrode EEG wireless

ecording system (Neuroelectrics Inc., Barcelona, Spain) to record

he EEG signals across the subjects. The captured data is streamed

hrough the standard Bluetooth ISM (Industrial Scientific Medical)

and, operating distance range is 10 m. The electrodes are inserted

nd arranged in the cap (Neuroelectrical cap) according to the in-

ernational 10–10 system. The recoded scalp sites include P7, P4,

z, Pz, P3, P8, O1, O2, T8, F8, C4, F4, Fp2, Fz, C3, F3, Fp1, T7, F7, Oz,

O4, FC6, FC2, AF4, CP6, CP2, CP1, CP5, FC1, FC5, AF3, and PO3 po-

itions. The scalp electrodes are referenced to a pair of electrodes

hich are connected to CMS and DRL channels. The system was

igitized at a sampling rate of 500 Hz. 

.2. Experimental procedure 

Thirty-two subjects, twenty female and twelve males, aged

rom 19–35 years, took part in this experiment. All were right-

anded, not on any medications, and without any history of neu-

ological and psychiatric disease. The whole experimental process

as completed within five days. Specifically, in the first day, each

articipating subject familiarised with the experimental details.

hen, a series of stimulation experiments was carried out in next

hree days. The purpose was to determine the tolerable time of

ne hand submerged in iced water. During those experiments, EEG

ignals did not need to be captured. The last day, we formally

aunched the experiment for capturing the EEG data from each

ubject with the same experimental procedure. The detailed pro-

ess of the experiment is described as follows. 
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Fig. 4. Illustration of the experimental procedure. 
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Table 2 

Confusion matrix for three-class classification. 

Predicted pain labels 

NP MP SP 

True pain labels NP x 11 x 12 x 13 

MP x 21 x 22 x 23 

SP x 31 x 32 x 33 
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Each subject with eyes open was comfortably seated in an up-

ight chair with a distance of 1 m from a computer screen. The

iagram of experimental process in a trail is shown in Fig. 4 . Con-

retely, each subject was first given 5-minute to relax prior to the

nitiation of a trail. Then the subject was asked to put his/her left-

and into a barrel with iced water mixture (3 °C ± 0.5 °C) in or-

er to give the tonic cold stimuli. Followed the first 3 s was spent

n keeping the subject’s hand still in iced water to simplify the

rocess of removing the muscular artifacts caused by hand move-

ents when preprocessing. After 3 s, the tonic cold stimuli exper-

ment was beginning. All subjects were required to remain as still

s possible and to focus their sight on a displaying green dot in

rder to minimize muscular and occipital artifacts. 

During the experiment, a 3-second break was given to each

ubject in order to rate the perceived pain intensity on 11-point

0–10) verbal rating scales (VRSs, 0: no pain, 1: barely notice-

ble pain, 5: mild pain and 10: worst pain ever). The aforemen-

ioned experimental procedure was repeated until the subject felt

he pain became unbearable. 

All subjects were from Northeastern University, Boston, USA,

nd the experimental procedure was approved by the Northeastern

niversity Institutional Review Board (IRB). Other subjects were

olunteers from Beijing Institute of Technology and gave written

nformed consent prior to the beginning of the experiments. 

.3. Experimental data 

From the results of the simulated experiment, we observed that

he tolerable time of the subject’s hand submerged in iced water

as 210 s, i.e., nine times to rate scores of pain perception, which

as able to be accepted by all subjects. In our case, the proposed

ethod is capable of classifying three types of pain states, i.e., No

ain (0), Moderate Pain (1–5), and Severe Pain (6–10), respectively.

e randomly selected 16 subjects’ pain scores from the partici-

ants as shown in Fig. 5 . For no pain state, i.e., No Pain (0), we

xtracted the EEG data from the relax phase prior to the initiation

f each trail, which was used as no pain measurement. 

Then, the EEG data for each subject was partitioned into three

egments, which correspond to three types of pain signals, i.e., no

ain, moderate pain and severe pain, respectively. For each pain

tate, we determined to extract three 20 s length of EEG data.

n our work, the size of one sample was set as 1 s EEG data.

ence, 30,0 0 0 sampling points (Sampling frequency: 500 Hz) was

reated for each pain state. Lastly, using the cropped strategy (See

ection 2.2 ), EEG data for each state was further processed to es-

ablish the dataset of pain states. The preprocessing data were

ompleted in MATLAB 2018. The proposed DFB-ConvNets model

as developed in Tensorflow 1.10 with Python 3.6. 

.4. N-fold Cross-validation 

To assess the generalization capability and choose optimal pa-

ameters of one classification method, the N-fold cross-validation

ethod is used in our work. Specifically, the set corresponding to
ach pain state is first divided into N subsets. Then, the N-1 sub-

ets are used as the training set and the remaining subset is used

s the testing set. The training process of each model candidate is

erformed iteratively N times. Further, the classification accuracies

f N folds are averaged. The best model is determined by the opti-

al parameters with the best average validation result. Lastly, the

ptimal pair of parameters is used to train the model on all the

raining data. 

By the aforementioned strategy, the 10-fold stratified cross-

alidation approach is used for parameters optimization of our

roposed DFB-ConvNets model. More formally, considering to the

ower mean square and bias, we decide to perform ten rounds

f 10-fold stratified cross-validation on the all dataset. Firstly, the

ataset corresponding to each pain state is divided into 10 subsets

ith equal data size. In each round, then, nine out of ten subsets

re utilized for the 10-fold cross-validation procedure, and the left

ne subset is used for testing. This process is repeated 10 times

ntil all EEG signals are included. Its aim is to enable a different

ubset used as the testing data in each time. The classification per-

ormance across all ten rounds of testing for each subject is aver-

ged for the final experimental results. 

. Experimental results 

To test the performance of the tonic cold pain recognition, this

ection gives the experimental results obtained by our proposed

FB-ConvNets model on the EEG database. Section 4.1 introduces

he evaluation method by means of generalized confusion matrix

trategy. Section 4.2 reports the results of performance evaluation

n testing DFB-ConvNets model with different combinations of fre-

uency bands. A comparison between the DFB-ConvNets model

nd the Single Frequency Band-based ConvNets (SFB-ConvNets)

odel is carried out in Section 4.3 . Section 4.4 discusses the ex-

erimental results obtained using the conventional machine learn-

ng methods. The last subsection analyzes and discusses compar-

son results between our proposed method and existing machine

earning methods on identifying the tonic cold pain states. 

.1. Evaluation method 

Our proposed model is attributed to a three-class classifier con-

isting of no pain (NP), moderate pain (MP), and severe pain (SP).

ts performance is evaluated using a generalized confusion matrix

also called an error matrix) which is a table where each row rep-

esents the cases in an actual class and each column represents the

ases in a predicted class in term of the DFB-ConvNets model. In

ur paper, based on statistical information of confusion matrix, the

verage testing accuracy, precision, specificity, sensitivity, and F-1

easure are calculated as performance evaluation metrics over the

en train-test repletion [38] . 

Table 2 shows the format of the confusion matrix with three

lasses. Firstly, three one-vs-all confusion matrices for each class C i 
 i = 1 , 2 , 3 ) need to be calculated [38] . Then, for an individual class,

he assessment is defined by TP i , FN i , TN i , and FP i . The Precision i ,

pecificity , Sensitivity , F 1 metrics for C , and the accuracy of the
i i i i 
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Fig. 5. Selected 16 Pain intensity ratings from 32 subjects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Combinations of different frequency bands. 

Name Frequency bands Name Frequency bands 

C1 δ, θ C11 θ , α

C2 δ, α C12 θ , β

C3 δ, β C13 θ , γ

C4 δ, γ C14 θ , α, β

C5 δ, θ , α C15 θ , α, γ

C6 δ, θ , β C16 θ , α, β , γ

C7 δ, θ , γ C17 α, β

C8 δ, θ , α, β C18 α, γ

C9 δ, θ , α, γ C19 α, β , γ

C10 δ, θ , α, β , γ C20 β , γ
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proposed classifier can be expressed as follows: 

P recisio n i = 

T P i 
T P i + F P i 

(7)

Speci f icit y i = 

T N i 

T N i + F P i 
(8)

Sensit i v it y i = 

T P i 
T P i + F N i 

(9)

F 1 i = 

2 

Sensit i v it y −1 
i 

+ P ecision 

−1 
i 

(10)

Accuracy = 

∑ 3 
i =1 T P i 
N 

(11)

where T P i = x ii denotes total number of true-positive cases for C i ,

T N i = 

∑ 3 
j=1 
j � = i 

∑ 3 
k =1 
k � = i 

x jk denotes total number of true-negative cases

for C i , F P i = 

∑ 3 
j=1 
j � = i 

x ji denotes total numbers of false-positive cases

for C i , and F N i = 

∑ 3 
j=1 
j � = i 

x i j denotes total numbers of false-negative

cases for C i , N is the total number of samples for each test. 

4.2. Results on diverse frequency bands 

In our case, five frequency bands are utilized for analyzing tonic

cold pain states. Those frequency bands can be represented as δ
(delta), θ (theta), α (alpha), β (beta), and γ (gamma), respec-

tively. To validate our proposed diverse frequency bands strategy,

the aforementioned frequency bands are combined with each other

non-repeatedly. The obtained twenty combinations of frequency

bands are showed in Table 3 . To simplify representation, the CN

( N = 1, …, 20) stands for combinations of different frequency bands.

Then, we compute and evaluate the performance of the pro-

posed DFB-ConvNets model on twenty combinations of frequency

bands. The precision, specificity, sensitivity, and F1-measure for

each combination are averaged across all subjects, respectively. The

obtained evaluation metrics for tonic cold pain states identifica-

tion are listed in Tables 4 and 5 . Specifically, Table 4 shows the

performance results of C1 to C10, Table 5 lists ones of C11 to C20.

From Table 4 , we observe that the best performance is obtained on
10, which consists of five frequency bands, with overall average

recision, specificity, sensitivity, and F1-measure of 87.58%, 93.72%,

7.43%, and 87.43%. Compared with performance results obtained

n Table 5 , C19 is higher than C10. The overall average precision,

pecificity, sensitivity, and F1-measure are 96.05%, 98.03%, 96.06%,

nd 96.05%, respectively. 

Fig. 6 shows the average recognition accuracy for each combina-

ion in the proposed classification framework. The best accuracy of

dentifying pain states is 97.37% with standard deviation 0.26% us-

ng the C19, which is composed of alpha, beta, and gamma bands.

ompared with C19, we observe that the C18 has a slightly lower

ccuracy result which is 96.26%. It is interesting to note that the

lassification accuracy drops slightly when the gamma band is ig-

ored. Additionally, C17 also obtains a closer classification accuracy

f 96.17% with respect to C18. Based on those results, it is seen that

he alpha, beta, and gamma bands contribute most to classification

ccuracy, and that the gamma band has a certain effect on clas-

ification performance of identifying tonic cold pain states. Hence,

he results state that the combination of alpha, beta, and gamma

ands seems to be important to pain quantification. 

.3. Comparison with SFB-ConvNets model 

Our proposed framework is evaluated on different combinations

f frequency bands of EEG signals. Its aim is to extract various fea-

ure representations from different frequency bands, which have a

etter ability to classify the pain states. For this task, it can also
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Table 4 

Results of identifying the tonic cold pain states on C1 to C10. 

Combination Pain state Precision (%) Specificity (%) Sensitivity (%) F1-measure (%) 

C1 NP 69.96 84.68 71.35 70.65 

MP 63.10 79.40 70.47 66.58 

SP 78.46 90.70 67.75 72.71 

C2 NP 72.58 85.74 76.50 74.63 

MP 68.83 83.82 71.45 70.12 

SP 74.71 88.47 68.12 71.27 

C3 NP 75.10 87.39 77.59 76.32 

MP 68.95 82.67 76.67 72.61 

SP 76.52 89.78 65.54 70.61 

C4 NP 70.41 84.68 72.90 71.63 

MP 64.67 79.90 73.59 68.84 

SP 77.45 90.68 64.02 70.10 

C5 NP 77.76 88.86 77.95 77.85 

MP 70.04 84.11 72.46 72.09 

SP 79.52 90.40 74.53 76.94 

C6 NP 74.40 86.59 77.98 83.72 

MP 75.03 87.70 73.91 83.10 

SP 77.17 89.97 74.61 84.18 

C7 NP 72.04 84.87 77.96 74.88 

MP 71.30 85.05 74.26 72.75 

SP 84.35 93.14 73.92 78.79 

C8 NP 73.37 85.51 79.85 76.47 

MP 73.05 86.18 74.94 73.98 

SP 84.17 92.99 74.57 79.08 

C9 NP 78.11 88.24 83.95 80.92 

MP 75.93 87.60 78.22 77.06 

SP 85.88 93.68 76.87 81.13 

C10 NP 85.88 92.55 90.53 88.14 

MP 85.72 92.67 88.06 86.88 

SP 91.13 95.93 83.71 87.26 

Table 5 

Results of identifying the tonic cold pain on C11 to C20. 

Combination Pain state Precision (%) Specificity (%) Sensitivity (%) F1-measure (%) 

C11 NP 78.22 88.83 80.23 79.21 

MP 78.12 89.08 77.97 78.45 

SP 79.13 89.82 77.25 78.18 

C12 NP 80.61 90.19 81.62 81.11 

MP 75.67 87.19 79.68 77.62 

SP 83.47 92.28 78.01 80.65 

C13 NP 65.82 80.77 74.07 69.70 

MP 67.89 83.91 68.06 67.98 

SP 77.71 90.28 67.79 72.41 

C14 NP 90.82 95.19 95.14 92.93 

MP 90.45 95.04 93.89 92.13 

SP 96.25 98.28 88.02 91.95 

C15 NP 91.87 95.82 94.60 93.22 

MP 92.38 96.09 94.95 93.65 

SP 93.79 97.07 88.40 91.01 

C16 NP 91.70 95.17 94.87 93.26 

MP 91.40 95.54 94.85 93.09 

SP 94.66 97.52 87.82 91.11 

C17 NP 93.56 96.67 96.63 95.07 

MP 93.48 96.69 94.91 94.19 

SP 95.82 98.01 91.21 93.46 

C18 NP 93.70 96.76 96.30 94.98 

MP 94.40 97.18 95.17 94.79 

SP 95.13 97.65 91.72 93.39 

C19 NP 95.10 97.46 98.39 96.71 

MP 96.27 98.16 94.74 95.50 

SP 96.87 98.46 95.05 95.95 

C20 NP 91.43 95.55 95.10 93.23 

MP 91.77 95.77 94.44 93.09 

SP 94.35 97.37 87.82 90.96 

b  

w  

e  

m  

s  

b  

M  

u  

o  

t  

b  

l  
e evaluated on a single frequency band. Actually, many previous

orks of analyzing and identifying tonic cold pain states were op-

rated in a single frequency band. In order to validate the perfor-

ance of diverse frequency bands strategy, we compare the clas-

ification results of our proposed model with the single frequency

and-based Convolutional Neural Networks (SFB-ConvNets) model.
ore specifically, one branch of the proposed DFB-ConvNets is

sed to perform the pain classification on a single frequency band

f EEG signals, i.e., δ, θ , α, β , and γ , respectively. The struc-

ure of SFB-ConvNets is composed of five convolution-max-pooling

locks, as illustrated in Fig. 2 . In this model, the concatenation

ayer is not required. The extracted features by five blocks are
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Fig. 6. Average accuracy of each combination in the proposed classification framework. 

Table 6 

Comparison of classification performance with the SFB-ConvNets model. 

Frequency band Pain state Precision (%) Specificity (%) Sensitivity (%) F1-measure (%) 

C19 NP 95.10 97.46 98.39 96.71 

MP 96.27 98.16 94.74 95.50 

SP 96.87 98.46 95.05 95.95 

delta NP 63.75 80.83 67.44 65.54 

MP 66.34 78.82 64.46 62.33 

SP 68.66 86.30 60.00 64.04 

theta NP 64.51 81.18 68.43 66.41 

MP 65.39 82.06 67.79 66.57 

SP 66.46 84.86 59.98 63.66 

alpha NP 88.94 94.16 94.43 91.60 

MP 90.74 95.34 90.25 90.49 

SP 93.32 96.87 88.06 90.62 

beta NP 90.20 95.04 91.35 90.77 

MP 89.99 94.90 91.62 90.80 

SP 92.80 96.51 89.93 91.34 

gamma NP 88.81 94.47 87.82 88.31 

MP 86.64 92.97 91.21 88.87 

SP 91.26 95.81 87.46 89.32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Average accuracies of C19 in the proposed framework and five frequency 

bands in the SFB-ConvNets model. 

p  

c  
directly sent into the fully-connected layer to perform classifica-

tion task. 

Table 6 lists the obtained metrics for tonic cold pain states

identification using precision, specificity, sensitivity, and F1-

measure. It is obvious that the experimental result of C19 has

greater classification performance compared with other frequency

bands, which illustrates that the fusion strategy can surely be

improved. As a consequence, the proposed DFB-ConvNets model

achieves the best accuracy for that it has more feature represen-

tations with consideration of multiple possible frequency bands. 

Fig. 7 illustrates the average classification accuracies of C19 in

our proposed model and five frequency bands in the SFB-ConvNets

model. It is apparent when the SFB-ConvNets model is performed

on α and β bands, the obtained classification performance is close,

i.e., 93.94% and 93.98%. For γ band, it achieves 92.55% of classi-

fication accuracy, which is a slightly worse than α and β bands.

These results are consistent with findings reported in previous pain

studies based on frequency domain analysis and machine learning

methods. More specifically, for frequency domain analysis method,

the EEG in β band was found to increase significantly under cold

ain conditions [ 8 , 9 ]. For machine learning methods, the classifi-

ation results in α and β bands are better than other frequency
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Table 7 

The results of paired t -test performed on DFB-ConvNets and SFB-ConNets clasifiers. 

Paired t -test C19 vs. delta C19 vs. theta C19 vs. alpha C19 vs. beta C19 vs. gamma 

p -value 4.645 × 10 −17 1.266 × 10 −19 2.055 × 10 −6 6.088 × 10 −5 1.131 × 10 −9 
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Fig. 8. Average accuracies of our proposed framework and conventional machine 

learning methods. 
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f  
ands [ 22 , 25 , 26 ]. Based on these results obtained in this case, it

s evident that α, β , and γ bands contribute the most effective

eature representations to classification results of identifying tonic

old pain states. 

In our research, a paired t -test is used to compare the DFB-

onvNets and SFB-ConvNets classifiers which are applied to 32

ubjects (same subjects). The p-value of the paired t -test carried

ut on the accuracy results are shown in Table 7 . It can be ob-

erved that there is significant difference in the accuracy between

he DFB-ConvNets and each SFB-ConvNets with p = . 0 0 0 at sig-

ificance level, α= 5% . Therefore, there is strong evidence that the

FB-ConvNets classifier does lead to improvements of pain states

lassification. 

.4. Comparison with other classifiers 

To prove the efficiency of the proposed ConvNets framework,

 comparison between the proposed method with the three clas-

ifiers, i.e., Support Vector Machines (SVM), Linear Discriminant

nalysis (LDA) and k-Nearest Neighbors (k-NN), is carried out. The

bove-mentioned classifiers are attributed to traditional machine

earning methods, which are primarily designed for the binary

lassification problem. In our research, however, a three-class clas-

ifier is required to be built for classifying no pain (NP), moder-

te pain (MP), and severe pain (SP). Therefore, the one-versus-one

cheme were used in the traditional classifiers. These classifiers

ere performed using the Scikit Learn Toolkit in Python. 

For the traditional machine learning algorithms, it depends on

xtracting features which are used to train a classifier for per-

orming classification task. As discussed in the introduction, the

avelet transform algorithm is a usual feature extraction method

or pain states classification. Here, a previous work for solving four-

lass motor imagery, i.e., combined Wavelet analysis and Common

patial Pattern (CSP) method, was used in this work as a feature

xtraction method [45] . The preprocessed EEG signals would be

ecomposed by Wavelet Transform. In our research, a six-layer

avelet Transform was applied to EEG signals. According to the

ules of the decomposition, the sub-frequency bands should be

0, 3.906], [3.906, 7.8125], [7.8125, 15.625], [15.625, 31.25], [31.25,

2.5], [62.5, 125], and [125, 250]. Because the frequency bands

f [7.8125, 15.625], [15.625, 31.25], and [31.25, 62.5] include α,

, γ bands, the related wavelet coefficients corresponding to the

hree frequency bands should reflect their frequency characteris-

ics. Then each channel of sampling values was replaced by the

avelet coefficients as the input of CSP. The feature vectors from

SP calculation are used to train the three classifiers. The detailed

nformation about this method can be seen in [45] . 

The parameters for the three classifiers are given here. For SVM,

olynomial (poly) and radial basis function (rbf) are used as its

ernel functions. The penalty parameter C is set as 2.3 and the

egree of poly as 3. For LDA, the automatic shrinkage using the

edoit-Wolf lemma is taken as parameters shrinkage and least

quares solution as solver. For k-NN, the number of nearest neigh-

ors were chosen as 5, 10, 20, 40, and 50. Through experiments,

ith 40 nearest neighbors higher accuracy was achieved. 

Table 8 lists the classification performance of the DFB-ConvNets

odel and the three classifiers. Obviously, our proposed DFB-

onvNets method produces the highest results in each metric.

ig. 8 shows the classification accuracies of five classifiers. It is
orth highlighting that our method achieves the high accuracy

hile k-NN classifier produces the worst result. The reasons may

e attributed to why the conventional classifier is not able to pro-

uce higher accuracies than our method as follows: (1) The tra-

itional machine learning method commonly perform good with

inary class data. (2) The better performance largely depends on

he selection of appropriate feature set representing the EEG sig-

als. Table 9 gives the p-value of the paired t -test carried out on

he accuracy results. It can be seen that there is significant differ-

nce in the accuracy between the DFB-ConvNets and each conven-

ional clasifier with p = . 0 0 0 at significance level, α= 5% . Therefore,

here is strong evidence that the DFB-ConvNets classifier improve

he performance of pain states classification. 

.5. Comparison with state-of-the-art methods 

According to aforementioned classification results, we choose

he C19 with best performance of identifying tonic cold pain states

s our optimal framework to compare with some state-of-the-

rt classification approaches based on machine learning strategy,

hich are described earlier. For the sake of fairness, all of ap-

roaches are performed on our established dataset. In addition to

22] , other methods totally use the discrete wavelet transform to

onstruct a time-frequency representation of the EEG signal for ex-

racting a set of nonlinear features. More specifically, the chosen

ethods were evaluated on different frequency bands as shown in

able 10 . Refs. [ 26 , 25 , 22 ] are run on a single frequency band, i.e.,

or α, [24] on the whole frequency bands, i.e., δ, θ , α, β , and γ ,

nd [21] on the four frequency bands, i.e., δ, θ , α, and β . 

Table 10 lists the classification performance of six approaches

sing precision, specificity, sensitivity, and F1-measure as an eval-

ation metrics. It can be seen that the classification performance

ased on our proposed DFB-ConvNets model is better than that

ased on wavelet transform approach, and obviously superior to

hat based on Fuzzy logic approach. 

Fig. 9 illustrates the classification accuracies of six approaches.

e can easily find that classification result of our proposed frame-

ork is slightly higher than that of [24] and [26] , which obtain

7.07% and 96.89%, respectively. The lowest classification perfor-

ance (i.e., 71.84%) is achieved by [22] , nearly 26% lower than

hat of our method. Considering a possible reason for this case, we

hink it can be attributed to difficult to construct an appropriate

uzzy rule set. The paired t -test has been carried out on the re-
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Table 8 

Comparison of classification performance with the conventional machine learning methods. 

Methods Pain state Precision (%) Specificity (%) Sensitivity (%) F1-measure (%) 

Our method NP 95.10 97.46 98.39 96.71 

MP 96.27 98.16 94.74 95.50 

SP 96.87 98.46 95.05 95.95 

SVM (rbf) NP 90.25 94.97 95.22 90.18 

MP 90.12 95.14 93.76 91.90 

SP 95.78 98.07 88.35 91.92 

SVM (poly) NP 91.76 95.60 94.80 93.26 

MP 92.56 95.98 94.70 93.62 

SP 92.87 97.12 88.20 90.47 

LDA NP 85.47 91.79 90.26 87.80 

MP 84.97 91.87 87.56 86.25 

SP 91.05 95.83 83.24 86.97 

k-NN NP 72.36 85.67 77.37 74.78 

MP 68.97 83.76 69.96 69.46 

SP 75.12 87.98 69.57 72.24 

Table 9 

The results of paired t -test performed on DFB-ConvNets classifier and the conventional machine 

learning methods. 

Paired t -test Ours vs. SVM(rbf) Ours vs. SVM(poly) Ours vs. LDA Ours vs. k-NN 

p -value 3.337 × 10 −8 3.313 × 10 −9 8.261 × 10 −12 1.376 × 10 −20 

Table 10 

Comparison of classification results of identifying tonic cold pain with the state-of-the-art methods. 

Method Frequency band Pain state Precision (%) Specificity (%) Sensitivity (%) F1-measure (%) 

Our Method α, β, γ NP 95.10 97.46 98.39 96.71 

MP 96.27 98.16 94.74 95.50 

SP 96.87 98.46 95.05 95.95 

[26] β NP 93.93 96.84 97.89 95.87 

MP 95.82 97.95 93.72 94.75 

SP 96.37 98.22 94.42 95.39 

[24] δ, θ , α, β , γ NP 94.27 97.01 98.26 96.22 

MP 96.12 98.10 93.88 94.99 

SP 96.52 98.29 94.68 95.59 

[21] δ, θ , α, β NP 71.47 84.45 77.92 74.55 

MP 72.91 89.95 75.61 74.23 

SP 73.78 88.56 64.39 68.77 

[25] β NP 92.47 96.06 96.84 94.61 

MP 93.44 96.77 92.00 92.72 

SP 94.55 97.36 91.52 93.01 

[22] α NP 58.05 78.07 60.71 59.35 

MP 53.94 74.95 58.67 56.20 

SP 62.23 83.63 53.92 57.78 

Fig. 9. Average accuracies of our proposed framework and the state-of-the-art 

methods. 
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sults listed in Table 11 . For [ 21 , 25 , 22 ], it can be observed that there

are significant differences compared with the DFB-ConvNets clas-

sifier, obtained p = . 0 0 0 at significance level, α= 5% . For [26] and
24] , however, there are no differences compared with the DFB-

onvNets classifier, obtained p = . 0680 and p = . 2037 at signif-

cance level, α= 5% . Therefore, there is no strong evidence that

he DFB-ConvNets classifier can improve the performance of pain

tates classification. 

. Discussion and conclusions 

The conventional practice to classify the pain states is by us-

ng frequency domain analysis methods and traditional machine

earning algorithms. Frequency domain analysis-based methods are

ot automatic algorithms to recognize pain states, but they pro-

ide evidence that there are obvious changes between pain and

o pain states occurred in specific frequency bands, e.g., alpha and

eta. Traditional machine learning algorithms are able to obtain

etter classification results of pain states, but those depend on ex-

racted features used for training a classifier which are still hand-

ngineered. In this case, not enough feature representations are

xtracted from pain EEG signals. To overcome the aforementioned

imitations, in this paper, a diverse frequency band-based ConvNets

odel is proposed for tonic cold pain states classification. 
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Table 11 

The results of paired t -test performed on DFB-ConvNets classifier and the state-of-the-art methods. 

Paired t -test Ours vs. [26] Ours vs. [24] Ours vs. [21] Ours vs. [25] Ours vs. [22] 

p -value 0.0680 0.2037 5.133 × 10 −16 0.0002 8.461 × 10 −18 
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The proposed framework first extracted diverse feature rep-

esentations from different frequency bands, then these features

ere concatenated and fed into a fully-connected network which

erformed pain states classification. To verify this purpose of the

tudy, 32 subjects were recruited and a procedure of cold stimuli

imulation experiment was designed and performed for collecting

EG data, which was used for training and testing our proposed

odel. The advantage of DFB-ConvNets comes from utilization of

iverse frequency band-based input and exploration of abundant

eature representations of EEG signals with the deep neural net-

ork structure. Experimental results demonstrate that the pro-

osed DFB-ConvNets model is able to provide higher accuracy than

tate-of-the-art techniques. 

Although the proposed framework is able to perform the pain

tates classification well and shows a competitive accuracy com-

ared to the state-of-the-art methods, the experiments and results

n this paper are subjected to some limitations: (1) All results men-

ioned in this paper are subject to the execution in a specific envi-

onment. (2) The proposed DFB-ConvNets model is currently lim-

ted to performing the cold pain state classification, results may

e different with pain states due to disease. (3) A limited dataset

ith only 32 subjects is used in our research. Overall, the proposed

ramework contributes with an alternative way to the endeavor

oward object quantification of the subjective characterization of

onic pain. 
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